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Numerical Analysis of Magnetohydrodynamics 
Flow in a Curved Duct 

Md. Mainul Hoque, Nisat Nowroz Anika and Md. Mahmud Alam 
 

Abstract— The effects of a transverse magnetic field on the steady motion of a conducting, viscous and incompressible fluid through a 
curved duct of circular cross section is studied in this paper. The curvature of the duct has been assumed to be small, that is, the radius of 
the circle in which the central line of the duct is coiled is large in comparison with the radius of the cross section. A solution is developed by 
Spectral method is applied as a main tool for the numerical technique; where, Fourier series, Chebyshev polynomials, Collocation 
methods, and Iteration method are used as secondary tools. The dimensionless parameters of the problem are Dean number ( )nD  and 
magnetic parameter ( )gM . Two vortex solutions have been found. Axial velocity has been found to increase with the increase of Dean 
number, while decrease with the increase of curvature and magnetic parameter. For high magnetic parameter & Dean number and low 
curvature almost all the fluid particles strength are week. The axial velocity contours are shown to be shifted toward the outer wall. Due to 
the combined effect of the magnetic field and Dean number a bracelet has been originates from the right corner of the duct and expands 
for high Dean number and curvature. 

Index Terms— Transverse Magnetic field, Dean Number, Curvature, Spectral Method. 

——————————      —————————— 

1 INTRODUCTION                                                                     

ULLY developed flow in curved ducts is encountered in 
various practical processes. In the analysis of fluidic devic-

es, flows in separation processes, heat exchangers, physiologi-
cal systems are examples of such processes. In the past few 
decades, most of the research works have been done on the 
fully developed flow through curved ducts. Therefore, the 
fully developed flow phenomena in the curved ducts have 
drawn a keen attention.  

  Dean (1927) first formulated the curved duct problem math-
ematically under the fully developed flow conditions and con-
firmed the existence of a pair of counter rotating vortices as a 
secondary flow in the curved duct. For the fully developed 
flow in a curved circular duct, Ito (1951) and Cuming (1952) 
separately showed the existence of a two-vortex secondary 
flow patterns by using perturbation method as was done by 
Dean (1927). McConalogue and Srivastava (1968) obtained 
numerical solutions for fully developed flow through a curved 
duct for the range of 96 600nD< ≤  by expanding in Fourier se-
ries and then integrating the resulting ordinary differential 
equations numerically. 

  Cheng and Akiyama (1970) and Cheng et al. (1975) reported 
two-vortex secondary flow patterns in a curved duct with 
square cross-section by using finite difference method. Masli-

yah (1980) investigated both numerically and experimentally 
the flow through a semi-circular duct with a flat outer wall. 
Both Nandakumar and Masliyah (1982) and Dennis and Ng 
(1982) separately obtained dual solution for the flow through a 
curved tube with circular cross-section. Later, the stability of 
the dual solutions of two-vortex and four-vortex secondary 
flow patterns was studied by Yanase et al. (1989). They found 
that the two-vortex secondary flow patterns are stable while 
the four-vortex flow patterns are unstable. In the numerical 
research works by Shanthini and Nandakumar (1986), Winters 
(1987) and Daskopolous and Lenhoff (1989), dual solutions for 
fully developed flow in a curved duct of square cross-section 
are found. Winters also found that there are many symmetric 
and asymmetric solutions, although many of them are linearly 
unstable. 

  In the early work, the four-vortex secondary flow patterns 
were found with two minor weak vortices. These two minor 
weak vortices are generated near the outer wall of the duct 
cross-section. Both Cheng and Akiyama (1970) and Cheng et 
al. (1975) found two-vortex secondary flow patterns for square 
cross-section by applying finite difference method. But Joseph 
et al. (1975), Ghia and Sokhey (1977) and De Vriend (1981) 
found four-vortex secondary flow patterns for rectangular 
cross-section of the duct. Cheng et al. (1977) investigated the 
flow patterns in curved rectangular channel for finite and infi-
nite aspect ratios of the cross-section and analyzed the flow 
field in a fully developed laminar flow.  

    Recently, Mainul et.al (2013) investigates the effects of mag-
netic field in the curved duct for curvature 0.2. In the present 
work our aim is to obtain a detail results on the Dean numbers 
as well as magnetic parameter at curvatures 0.5δ = . In this pre-
sent study, the magnetic field has been imposed along the cen-
ter line of a curved duct. 
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2 PROBLEM FORMULATION 
  Let us consider a curved duct with circular cross-section con-
taining incompressible inviscid fluid (Figure: 1). Let the radius 
of the duct be L , radius of cross-section be a . To reach the 
point ( ), ,x y z  we have to travel L r+  unit ( 0 r a≤ ≤  ) along x-
axis, then turn an angle q  considering the origin as centre in 
the xy plane, then turn again an angle a  in the plane of cross-
section. Then ( ), ,x y z  and ( ), ,r a q  are related as, 
 

( )cos cosx L r a q= + , ( )cos siny L r a q= + , sinz r a=  
 
2.1 Basic Equations 
For incompressible fluid, the equation of motion  

21dq F p q
dt

ν
ρ

= − ∇ + ∇                                                                    (1) 

Here, 

( ).dq q q q
dt t

∂
= + ∇
∂

                                                                          (2) 

Then equation (1) becomes  

( ) 21.q q q F p q
t

ν
ρ

∂
+ ∇ = − ∇ + ∇

∂
                                                   (3) 

 

 
 
Figure. 1: Toroidal Coordinate systems for curved duct with 
magnetic field 
 
Since, a magnetic field of constant strength is imposed to act 
throught perpendicular to the central axis of the curved duct 
in the direction of Z- axis as shown in the figure-1. Since the 

velocity field is modified by the magnetic field vector and the 

equation of motion appears a body force 1 J B
ρ

∧  per unit 

volume of electro- magnetic origin. If there is no other body 
force then the equation of motion  (3) becomes 
 

( ) 21 1.q q q p q J B
t

ν
ρ ρ

∂
+ ∇ = − ∇ + ∇ + ∧

∂
                                      (4) 

 
2.2 Toroidal Coordinates System 
 
Let us defined the following non-dimensional variables 
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where , ,u v w′ ′ ′ are non-dimensional velocities along the radial, 
circumferential and axial direction respectively. r′ is non-
dimensional radius, S ′  is the non-dimensional axial variable, 
δ  is non-dimensional curvature and p′ non-dimensional 
pressure.  
 
Non-dimensional continuity equation: 

( ) ( )/ //
/ /

/
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a
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+∂
+ +

∂
            

      ( )
/

/ / / /cos sin 0
2
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∂
+ − + =

∂
                       (5) 

Non-dimensional radial momentum equation: 

( )
2 2/ / / / /

/
/ / / /

cos
2 cos

u v u v Lwu
r r r L ar

a
a a

∂ ∂
+ − −
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/ / / / / e
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     (6) 

Non-dimensional circumferential momentum equation: 
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                      (7)        

 
Non-dimensional axial momentum equation: 
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                                                                                                          (8) 
The other variables without primes are dimensional variables. 
Constant pressure gradient force is applied along the axial 
direction through the centre of cross section.  
 
With the help of the above dimensionless variables and the 
boundary conditions the equation of motion reduces to the 
following form: 
 

( ) ( ) 21
r r r

ψ ψψ ψ ψ
a a

∂ ∆ ∂ ∆ ∂ ∂ − + ∆ ′ ′ ′∂ ∂ ∂ ∂  
             

                       cossin 0g
w ww M
r r

aa ψ
a

′ ′∂ ∂ ′+ + − ∆ = ′ ′∂ ∂ 
           (9) 

and 1 0n
w w w D

r r r
ψ ψ

a a
′ ′∂ ∂ ∂ ∂  ′− + ∆ + = ′ ′ ′∂ ∂ ∂ ∂ 

               (10) 

Here, ψ  is the stream function defined by, 1u
r

ψ
a
∂′ =
′ ∂

, 

v
r
ψ∂′ = −
′∂

, G is the constant pressure gradient force, µ  is the 

viscosity, u  is the kinematic viscosity, nD  is the Dean number 
and gM

 
is the magnetic parameter. Equation (9) and (10) are 

called secondary and axial flow respectively.  

where,
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3 NUMERICAL TECHNIQUE 
 
  This study depends on the Magnetohydrodynamics Navier-
Stokes momentum equation. When the flow is driven only by 
pressure gradient force parabolic velocity profile is found.  
But, when the flow is subjected to magnetic field and curva-
ture the Magnetohydrodynamics Navier-Stokes equation be-
come non-linear. It becomes very difficult to solve the equa-
tions analitically. For obtaining the solution of such problems 
we adopt advanced numerical methods. The governing equa-
tions of our problem contain a system of partial differrential 
equations which will be transformed by usual transformation 
into a non-dimensional system of non-linear partial differen-

tial equations with boundary conditions. Usually the theoreti-
cal treatment of flow in a curved duct has been made either 
analytically or numerically. The present work is mainly based 
on numerical methods. For this purpose the Spectral method 
has been used to solve the equations. As for the spectral collo-
cation method (Gottlieb and Orszag, 1977) which will be main-
ly used in this dissertation, it is necessary to discuss the meth-
od in brief. The expansion by polynomial functions is utilized 
to obtain steady or non-steady solution. Fourier series and 
Chebyshev polynomials are used in circumferential and radial 
directions respectively. Assuming that steady solution is 
symmetric with respect to the horizontal line of the cross-
section, ψ  and w′  are expanded as, 

( ) ( ) ( )
1 0

, sin cos
N N

s c
n n

n n
r f r n f r nψ a a a

= =

′ ′ ′= +∑ ∑  

and ( ) ( ) ( )
1 0

, sin cos
N N

s c
n n

n n
w r w r n w r na a a

= =

′ ′ ′ ′= +∑ ∑  

 
 where, N is the truncation number of the Fourier series. The 
collocation points are taken to be, 

2cos
2

N iR
N

π+ − =  
+ 

[1 1i N≤ ≤ + ]. Then we get non-linear 

equations for , , ,s c s c
nm nm nm nmW W F F . The obtained non-linear alge-

braic equations are solved under by an iteration method with 
under-relaxation.  

  Convergence of this solution is taken up to five decimal plac-
es by taking 5

p 10ε −< . Here, p is the iteration number. The 
values of M and N are taken to be 60 and 35 respectively for 
better accuracy. Where,  

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 21 1

1 0

2 21 1
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mn mn mn mn
n m

F F W W

F F W W

ε + +

= =

+ +

= =

 = − + −  

 + − + −  

∑∑

∑∑
 

 
4 RESULTS AND DISCUSSIONS 
  Flow through a curved duct of circular cross section with 
Magnetic parameter has been considered. The flow is gov-
erned by three non dimensional parameters: the Dean num-
ber ( ) ,nD  curvature ( )δ and the magnetic parameter ( )gM . 

The main flow is forced by the magnetic field as well as pres-
sure gradient along the centre line of the duct. For circular 
cross sectional duct, steady solution has been obtained by us-
ing the spectral method where Chebyshev polynomials and 
Fourier series have been used in the radial and circumferential 
direction respectively. 
  At the outset, the calculation for steady laminar flow for vis-
cous incompressible fluid has been analyzed under the action 
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of Dean number as well as magnetic parameter at curva-
tures 0.5δ = .  

  The results have been shown through stream line, vector 
plots of the secondary flow and contour plots of the axial flow. 
In both the cases, inner side is to the left and outer side is to 
the right. The arrows in the vector plots (Figs. 2-9) denote the 
direction and magnitude of the secondary velocity. In case of 
contour plots (Figs. 2-9) the distance between two consecutive 
contours is adjusted automatically and kept invariant 
throughout this dissertation. The stream line, vector and con-
tour plots of the flow development have been shown at differ-
ent magnetic parameters which are arranged in a column form 
left to right. In each figure, three columns have been pro-
duced. Among them the left column shows the stream line, 
middle and right column shows, vector plots of the secondary 
flow and contour plots of the axial flow behaviors in that or-
der. The obtained results are stated below. Six cases have been 
considered as: 

 
4.1 Dean number =( ) 400nD at Curvature δ =( ) 0.5  
 
  After a comprehensive survey over the parametric space, 
steady solution curve has been obtained in Fig. 2 for non-
dimensional flux (κ ) with the variation of magnetic parame-
ter for 400nD = and 0.5δ = . For each figure the total flow is 
found to decreases as the magnetic parameter increase. The 
highest flux is found at 0.5δ =  and 10000gM = . The flow 

structures has been depict at the several points of ( )gM  in 

Fig. 2 when 0.5.δ =  
 
  The difference of the stream line, vector plots of the second-
ary flow and axial flow for different values of magnetic pa-
rameter have been discussed for Dean Number 400.nD =  In 
Fig. 3 the stream line, vector plots of the secondary flow and 
axial flow for different values of magnetic parameter at Dean 
Number 400nD =  have been shown at the first, second and 
third column respectively. The highest value of magnetic pa-
rameter, increment in axial velocity ( w∆ ), increment in con-
stant ψ − lines ( ψ∆ ) have been given on the right side. For 
each figure the outer wall is to the right and the inner wall is 
to the left.  
 
  The length of arrow indicates the ratio of the stream velocity 
to the axial velocity and the direction of the flow in vector 
plots are always indicates by an arrowhead, no matter how 
small the flow is. Thus, the relative strength of the flow is not 
resolved for areas of a very weak secondary flow. 
 

 

 

                        

 

 

 

 

 

 

 

 

 
 

In Fig. 3 the vector plots of the secondary flow show the direc-
tion of the fluid particles and the strength of the vortex is 
shifted towards outer half of the cross-section as magnetic pa-
rameter increases. Velocities of the particles above the centre 
again increase due to the magnetic effect at 3300gM = , but the 

velocity of the particles below the centre of cross–section keeps 
decreasing.  

  Finally two vortex flow is found where the upper vortex is 
rotating anti–clock wise and the lower vortex is rotating clock 
wise, but the strength of the two vortices are almost same. 
At 6000gM = and 400nD =  axial flow contours are nearly 

circular and are eccentric with the centers shifted towards the 
inner wall of the tube duct as a result almost all the fluid parti-
cles strength are week. In that case almost all the fluid particle 
is shifted to the centre from the wall of the cross section as 
magnetic parameter increases. 

4.2 Dean number =( ) 800nD at Curvature δ =( ) 0.5  

In Fig. 4 non-dimensional flux (κ ) has been plotted against 
magnetic parameter for 800nD = and 0.5δ = . And it is clear 
that the flux increases with the increase of magnetic parame-
ter. But if the magnetic parameter increases continuously the 
rate of change flux is negligible. For each figure the total flow 
is found to decreases as the magnetic parameter increase. The 
highest flux is found at 0.5δ =  and 15000gM = .  For 

15000gM >  and 0.5δ =  convergence criteria is very poor 
and as a result stable solution has not been found beyond this 
region. The stable solution zone initially increases with the 
increase of curvature. The largest magnetic parameter to give 
stable solution is  11500gM =  for 0.5δ = . 

Flux (κ ) 
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Fig. 3: The secondary flow, vector plots of the secondary flow and axial flow for different values of 
magnetic parameter at Dean Number 400nD =  
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In Fig. 6 the stream line, vector plots of the secondary flow and 
axial flow for different values of magnetic parameter at Dean 
Number 800nD =  have been shown at the first, second and 
third column respectively. 
  The highest value of magnetic parameter, increment in axial 
velocity ( w∆ ), increment in constant ψ − lines ( ψ∆ ) have 
been given on the right side of the above figures. For each fig-
ure the outer wall is to the right and the inner wall is to the 
left. The length of arrow indicates the ratio of the stream veloc-
ity to the axial velocity and the direction of the flow in vector 
plots are always indicates by an arrowhead, no matter how 
small the flow is. Thus, the relative strength of the flow is not 
resolved for areas of a very weak secondary flow. In Fig. 6 the 
vector plots of the secondary flow show the direction of the 
fluid particles and the strength of the vortex is shifted towards 
outer half of the cross-section as magnetic parameter increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In case of secondary flow behavior, symmetric contour plots 
have been found which are shown Fig 6. As magnetic parame-
ter increases there originate a secondary flow and only 2-
vortex solution has been found for the secondary flow. The 
two vortexes are of same strength but rotating in counter 
clockwise direction. 
  In Fig. 6, the axial flow is greater in magnitude than second-
ary flow and it varies a great deal with magnetic parameter. As 
a result the difference between two consecutive contours line 
of the axial flow have been taken different for different mag-
netic parameters. For high magnetic parameter, Dean number 
and low curvature, the axial flow is shifted towards the centre 
of the duct as a result almost all the fluid particles strength are 
week. 

4.3 Dean number =( ) 1000nD at Curvature δ =( ) 0.5  
 
In Fig. 5 we obtained the steady solution curve for non-
dimensional flux (κ ) with the variation of magnetic parame-
ter for 1000nD = and 0.5δ = . And it is clear that the flux in-
creases with the increase of magnetic parameter. But if the 
magnetic parameter increases incessantly the rate of change of 
flux is trifling. For each figure the total flow is found to de-
creases as the magnetic parameter increase. The highest flux is 
found at 0.5δ =  and 1000gM = . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  In Fig. 7 the stream line, vector plots of the secondary flow 
and axial flow for different values of magnetic parameter at 
Dean Number 1000nD =  have been shown at the first, second 
and third column respectively. The highest value of magnetic 
parameter, increment in axial velocity ( w∆ ), increment in 
constant ψ − lines ( ψ∆ ) have been given on the right side of 
the above figure. For each figure the outer wall is to the right 
and the inner wall is to the left. 

  In case of axial flow behavior, the axial flow is also symmet-
ric. The fluid particles are shifted towards the outer wall of the 
cross section and form a low velocity band inside the outer wall 
of the cross-section in Fig. 7. As magnetic parameter decreases 
the magnitude of the axial flow gets higher. The axial flow 
decreases with the increase of Magnetic parameter. Also the 
maximum axial flow is shifted to the centre from the wall of 
the cross section as Magnetic parameter increases. The vector 
plots of the secondary flow for 1000nD =  and 0.5δ = has 
been shown in Fig 7. As the flow enters two vortexes flow is 
setup. The particles near the centre of cross-section gets out 
ward velocity, but the particles near the upper and lower 
boundary gets inward velocity 

Fl
ux

 (

κ

) 

Magnetic parameter ( )gM  

Fig. 5: Flux κ versus magnetic  parameter gM for 

Dean number 1000nD =  

Fig. 4: Flux κ versus magnetic  parameter gM for Dean 

number 800nD =  
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Fig. 6: The secondary flow, vector plots of the secondary flow and axial flow for dif-
ferent values of magnetic parameter at Dean Number 800nD =  
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Fig. 7: The secondary flow, vector plots of the secondary flow and axial flow for dif-
ferent values of magnetic parameter at Dean Number 1000nD =  
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4.4 Dean number =( ) 2000nD at Curvature δ =( ) 0.5  
 
In Fig. 8 we obtained the steady solution curve for non-
dimensional flux (κ ) with the variation of magnetic parame-
ter for 2000nD = and 0.5δ = . And it is clear that the flux in-
creases with the increase of magnetic parameter. But if the 
magnetic parameter increases incessantly the rate of change of 
flux is trifling. For each figure the total flow is found to de-
creases as the magnetic parameter increase. The highest flux is 
found at 0.5δ =  and 30000gM = . 
  In Fig. 9 the stream line, vector plots of the secondary flow 
and axial flow for different values of magnetic parameter at 
Dean Number 2000nD =  have been shown at the first, second 
and third column respectively. The highest value of magnetic 
parameter, increment in axial velocity ( w∆ ), increment in 
constant ψ − lines ( ψ∆ ) have been given on the right side. For 
each figure the outer wall is to the right and the inner wall is 
to the left. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 For 30000gM >  and 0.5δ =  convergence criteria is very 
poor and as a result no stable solution is found beyond this 
region. The stable solution zone initially increases with the 
increase of curvature. The largest magnetic parameter to give 
stable solution as well as an extra circular zone is  25000gM =  
for 0.2δ = . It is clear that the fluid motion begins with two-
vortex solution of the secondary flow as shown in stream line 
plots which stretches into the interior of the duct and the 
number of vortex that appeared of course depends on the 
Dean number ( )nD as well as magnetic parameter ( )gM  

which has been shown in Fig. 9 in the range 20 30000gM≤ ≤  . 
In the case of axial flow almost all the fluid particle is shifted 

to the centre from the wall of the cross section as Magnetic 
parameter increases.  
  
 At 500gM = and 2000nD =  axial flow contours are nearly 

circular and are eccentric with the centers shifted towards the 
outer wall of the tube duct. At gM = 25000 a strong magnetic 

field is found to confine the secondary flow streamlines to a 
thin layer near the tube wall. The secondary flow rate in the 
near wall boundary is increased by the magnetic field.   
  The contour plots of the axial velocity has been shown in Fig. 
9  for magnetic parameter gM = 20, 500, 1500, 1800, 3000, 5000, 

7000, 11000 respectively for 2000nD = at 0.5δ = . The axial 
flow is symmetric about the plane passing through the centre 
of cross section in the presence of magnetic field. As the flow 
enters the duct boundary layer begins to develop. Boundary 
layer near the inner wall develops faster than that at the outer 
wall. Just after the entrance, the axial velocity of the particle in 
the inner half is lower for small curvature. But as the flow pre-
cedes downstream the particles in outer half attains higher 
velocity.  
  At last, due to the effect of magnetic field a bracelet has been 
originates from the right corner of the duct and expands at 

gM = 7000. This bracelet gradually increases with the increase 

of magnetic parameter and shifted to the centre. At gM = 5000 

the bracelet finally dropped to the centre and the bracelet also 
expand at magnetic parameter gM = 2000 

  In the case, of vector plots of secondary flow a clock wise 
rotating vortex is set up after the entrance at gM = 20. Also an 

anti–clock wise rotating vortex originates from the top and 
expands. On the other hand the secondary velocity of the par-
ticles around the center of cross–section decreases starting 
from the particles above the centre to the particles below the 
centre. Finally two vortex flow is found where the upper vor-
tex is rotating anti–clock wise and the lower vortex is rotating 
clock wise, where the strength of the two vortices are almost 
same. 

5 CONCLUSIONS 

Studies on various aspects of the curvature as well as magnetic 
parameter have been made and revealed many physically in-
teresting characteristics of the flows. The well constructed 
mathematical approaches numerically have been adopted to 
analyze the equations.  

  The flows were considered into two configurations, one is the 
flow in circular cross sectional duct with the variations of cur-
vature and the other is circular cross sectional duct with high 
magnetic parameter. In this dissertation, steady solutions have 
been obtained by using the spectral method as a main numeri-
cal tool where Chebyshev polynomials and Fourier series have  
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Fig. 9: The secondary flow, vector plots of the secondary flow and axial flow for dif-
ferent values of magnetic parameter at Dean Number 2000nD =  
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been used in the radial and circumferential direction respec-
tively.  

  The results obtained for each of the flows have been dis-
cussed and analyzed in the respective sections in detail. Since 
no experimental as well as numerical results of the corre-
sponding studies are available. Therefore comparison of our 
results could not be made with experimental as well as numer-
ical results.  

  However, qualitative agreements of our results with other 
numerical result are very good.  From the point of the method 
of analyses and from the trends of the results obtained, it is 
well recommended that the present study can be extended to 
the other flows which are interesting to the engineers as well 
as to the theoreticians dealing with flow in curved duct. It is 
also interesting to carry out the experiment and compare the 
results with those of present study. 

According to the present results, we can draw the following 
concluding remarks: 

1. As Dean number as well as magnetic parameter increases 
there originate a symmetric contour plot and only 2-vortex 
solution has been found for the secondary flow. 2. The two 
vortexes are of same strength but rotating in counter clockwise 
direction.  

3. The strength of the vortices is shifted to the outer half from 
the inner half with the increase of magnetic parameter, Dean 
number and curvature. As a result the difference between two 
consecutive contours line of the axial flow have been taken 
different for different magnetic parameters.   

4. For high magnetic parameter, Dean number and low curva-
ture, the axial flow is shifted towards the centre of the duct as 
a result almost all the fluid particles strength are week.  

5. And finally due to the combined effect of the magnetic field 
and Dean number a bracelet has been originates from the right 
corner of the duct and expands for high Dean number and 
curvature. 
 
6. For low magnetic parameter, contours are nearly circular. 
The effect of strong transverse magnetic field is to enhance the 
compression of fluid toward the outer wall. A strong magnetic 
field is found to confine the secondary flow streamlines to the 
duct wall. There are no drastic changes in the flow patterns 
except the quantitative differences. 
 

REFERENCES 
[1] Cheng, K. C. and Akiyama, M., (1970), Laminar forced convective hea  
      transfer in curved rectangular channels, International Journal of heat and  
     mass transfer, Vol. 13,   pp.  471-490. 
[2] Cheng, K. C., Lin, R. and Ou, J. W., (1975), Graetz problem in curved   
     square channels, Trans. ASME Journal of heat transfer, Vol. 97, pp. 244-  
     248. 

[3] Cuming, H. G., (1952), The secondary flow in curved pipes, Aeronautic        
     Research Council  Report, Mem. No. 2880. 
[4] Daskopoulos, P. and Lenhoff, A. M., (1989), Flow in curved ducts: bi 
      furcation structure for stationary ducts, Journal of Fluid Mechanics,  
     Vol. 203, pp. 125-148. 
[5] Dean, W. R., (1927), Note on the motion of fluid in a curved pipe, Phil 
     osophical magazine and Journal of Science, 4(20), pp. 208-223. 
[6] Dennis, S. C. R. and Ng, M., (1982), Dual solutions for steady laminar 
      flow through a curved tube, Quarterly Journal of Mechanics and Applied  
     Mathematics, Vol. 35,    pp.305-324. 
[7] Dennis, S. C. R. and Ng, M., (1982), Dual solutions for steady laminar   
      flow through a curved  tube, Quarterly Journal of Mechanics and  
     Applied Mathematics, Vol. 35,    pp.305-324. 
[8] De Vriend, H. J., (1981), Velocity redistribution in curved rectangular  
     channels, Journal of Fluid  Mechanics, Vol. 107, pp.423-439. 
[9] Ghia, K. N. and Sokhey, J. S., (1977), Laminar incompressible Viscous  
     Flow in Curved Ducts of  Rectangular cross-section, Trans. ASME,  
    Journal of Fluids Engineering, Vol. 99, pp.640-648. 
[10] Ito, H., (1951), Theory on laminar flows through curved pipes of ellip 
       tic and rectangular  cross-section, The report of the institute of   
       high speed Mechanics, Tohoku University,  Sendai, Japan, Vol. 1,  
       pp. 1-16. 
[11] Joseph, B., Smith, E. P. and Adler, R. J., (1975), Numerical treatment of  
       laminar flow in Helically Coiled tubes of square cross-section, AIChE   
       Journal, Vol. 21, pp. 965-979. 
[12] Masliyah, J. H., (1980), On laminar flow in curved semicircular ducts,  
       Journal of Fluid  Mechanics, Vol. 99, pp. 469-479. 
[13] McConalogue, D. G. and Srivastava, R. S., (1968), Motion of a fluid in  
        curved tube, Proceeding of Royal Society of London Series A, Vol. 307, pp.  
       37-53. 
[14] Nandakumar, K. and Masliyah, J. H., (1982), Bifurcation in steady  
       laminar flow through curved tube, Quarterly Journal of Mechanics and  
       Applied Mathematics, Vol. 119, pp. 475-490. 
[15] Shanthini, W. and Nandakumar, K., (1986), Bifurcation phenomena of  
       generalized Newtonian  fluids in curved rectangular ducts, Journal  
       of Non-Newtonian Fluid Mechanics, Vol. 22, pp. 35-60. 
[16] Winters, K. H., (1987), A bifurcation study of laminar flow in a curved  
        tube of rectangular cross-section, Journal of Fluid Mechanics, Vol. 180, 
       pp. 343-369. 
[17] Yana   se, S., Goto, N. and Yamamoto, K., (1989), Dual solutions of the  
        flow through a curved tube, Fluid Dynamics Research, Vol. 5, pp. 191- 
       201. 
 
 

IJSER

http://www.ijser.org/

	1 Introduction
	2 Problem Formulation
	2.1 Basic Equations
	2.2 Toroidal Coordinates System

	3 Numerical Technique
	4 Results And Discussions
	4.1 Dean number at Curvature
	4.2 Dean number at Curvature
	4.3 Dean number at Curvature
	4.4 Dean number at Curvature

	5 Conclusions
	References
	[13] McConalogue, D. G. and Srivastava, R. S., (1968), Motion of a fluid in
	curved tube, Proceeding of Royal Society of London Series A, Vol. 307, pp.
	37-53.




